defaultParSensorArray() SensorArray(...) Sensor(num = 1, ...)
List of the default parameters.
Method getSensor.
Method affinity.
Class SensorArray
is a extension of the class
Sensor
for many sensor elements.
Function to get default constructor parameters of class
SensorArray
.
Constructor method of SensorArray Class.
Wrapper function SensorArray.
Wrapper function Sensor
The array aggregates classes
ConcNoiseModel
,
SensorNoiseModel
,
SorptionModel
, SensorModel
and DriftNoiseModel
.
In comparision to the class Sensor
, slot
num
is a numeric vector, and class
SensorArray
also inherits class
DriftNoiseModel
.
See Sensor
and
DriftNoiseModel
for more details.
Slots of the class:
type |
Sensor
type (not used). Default value is polymeric . |
idx |
Sensor index (unique ID number). |
enableSorption |
Boolean whether
SorptionModel is enabled. Default value is
TRUE . |
... |
Slots inherited from
super-classes ConcNoiseModel ,
SensorNoiseModel ,
SorptionModel , SensorModel
and DriftNoiseModel . |
Methods of the class:
predict |
Predicts a model response to an input concentration matrix. |
coef |
Extracts the coefficient matrix from sensors. |
csd |
Gets the
concentration noise level (inherited from class
ConcNoiseModel ). |
csd<- |
Sets the concentration noise level. |
ssd |
Gets
the sensor noise level (inherited from class
SensorNoiseModel ). |
ssd<- |
Sets the sensor noise level. |
The plot
method has the only type (parameter
y
):
response |
(default) Shows the sensitivity curves per gas in normalized concentration units. |
# array: default initialization sa <- SensorArray() # get information about the array show(sa)Sensor Array of 2 sensors, 3 gases A, B, C - enableSorption TRUE, enableDyn FALSE - Sensor Model (num 1, 2), beta 2, data model 'ispline' - Sorption Model (knum 1, 2), alpha 2.25 - Concentration Noise Model (csd 0.1), noise type 'logconc' - Sensor Noise Model (ssd 0.1), noise type 'randomWalk' - Drift Noise Model (dsd 0.1), common model 'cpc'print(sa)SensorArray - enableSorption: TRUE (1) Sensor Model - num 1, 2 - beta 2 - 3 gases A, B, C - (first) data model - method: ispline (type: spline) - sensor model: coeffNonneg TRUE -- coefficients (first): 3.2174, 3.8031, 4.4229 ... 4.2032 (2) Sorption Model - knum 1, 2 - 3 gases A, B, C (3) Concentration Noise Model - 3 gases A, B, C - csd: 0.1 - noise type: logconc - log-factor: 1, 1, 2 (4) Sensor Noise Model - num 1, 2 - 3 gases A, B, C - ssd: 0.1 - noise type: randomWalk - noise-factor: 1, 1, 1, 1, 1, 1, 1, 1, 1 (5) Drift Noise Model - num 1, 2 drift common model - method: cpc - ndcomp: 1print(coef(sa)) # array coefficients[,1] [,2] [1,] 3.217389 3.008966 [2,] 3.803072 3.643202 [3,] 4.422950 4.299156 [4,] 5.350381 5.336516 [5,] 2.577624 2.611796 [6,] 0.000000 0.000000 [7,] 3.002658 2.807784 [8,] 3.602933 3.424680 [9,] 4.203208 4.041576#plot(sa) # model: custom parameters sa <- SensorArray(num=1:17) # 17 UNIMAN virtual sensors plot(sa, main="17 UNIMAN virtual sensors")# array with quite linear sensors sa <- SensorArray(num=15:17, alpha=0.01, model="mvr") print(sa)SensorArray - enableSorption: TRUE (1) Sensor Model - num 15, 16, 17 - beta 2 - 3 gases A, B, C - (first) data model - method: mvr (type: mvr) - sensor model: coeffNonneg TRUE -- coefficients (first): 0.4382, 0, 0.0328 (2) Sorption Model - knum 15, 16, 17 - 3 gases A, B, C (3) Concentration Noise Model - 3 gases A, B, C - csd: 0.1 - noise type: logconc - log-factor: 1, 1, 2 (4) Sensor Noise Model - num 15, 16, 17 - 3 gases A, B, C - ssd: 0.1 - noise type: randomWalk - noise-factor: 1, 1, 1 (5) Drift Noise Model - num 15, 16, 17 drift common model - method: cpc - ndcomp: 1# add UNIMAN reference data (the models were build from) p1 <- plotResponse(sa, main="Array of more linear sensors") # sensor object: default initialization s <- Sensor() # get information about the sensor show(s)Sensor Array of 1 sensors, 3 gases A, B, C - enableSorption TRUE, enableDyn FALSE - Sensor Model (num 1), beta 2, data model 'ispline' - Sorption Model (knum 1), alpha 2.25 - Concentration Noise Model (csd 0.1), noise type 'logconc' - Sensor Noise Model (ssd 0.1), noise type 'randomWalk' - Drift Noise Model (dsd 0.1), common model 'cpc'print(s)SensorArray - enableSorption: TRUE (1) Sensor Model - num 1 - beta 2 - 3 gases A, B, C - (first) data model - method: ispline (type: spline) - sensor model: coeffNonneg TRUE -- coefficients (first): 3.2174, 3.8031, 4.4229 ... 4.2032 (2) Sorption Model - knum 1 - 3 gases A, B, C (3) Concentration Noise Model - 3 gases A, B, C - csd: 0.1 - noise type: logconc - log-factor: 1, 1, 2 (4) Sensor Noise Model - num 1 - 3 gases A, B, C - ssd: 0.1 - noise type: randomWalk - noise-factor: 1, 1, 1, 1, 1, 1, 1, 1, 1 (5) Drift Noise Model - num 1 drift common model - method: cpc - ndcomp: 1plot(s)# sensor object: custom parameters s <- Sensor(num=5, enableSorption=FALSE) # sorption model disabled plot(s, main="Sensor with sorption model disabled")s <- Sensor(num=5, alpha=0.01) # amost linear sensor plot(s, main="Almost linear sensor, non-linearity 0.01")s <- Sensor(num=5, alpha=1) # saturated sensor plot(s, main="Saturated sensor, non-linearity 1")s <- Sensor(num=5, csd=0, ssd=0, dsd = 0) # noise level is set to zero plot(s, "snoise", main="Noise-free sensor")s <- Sensor(num=5, csd=1, ssd=1, dsd = 0) # maximum reasonable level of noise plot(s, "snoise", main="Very noisy sensor")# method plot # - plot types 'y': response, noise s <- Sensor() # default model plot(s, "response", main="plot(s, 'response')")# default plot type, i.e. 'plot(s)' does the same plotting plot(s, "snoise", main="plot(s, 'snoise')")